урок 3


Технологическая карта урока № 3

Тема урока: «Кодирование звуковой информации», 10 класс

Учитель: Петрова Евгения Николаевна

Тема: «Кодирование и обработка информации»
Тема урока: «Кодирование звуковой информации», 10 класс

Тип урока: Комбинированный урок.
Форма урока: Урок с использованием интерактивных технологий.
Цели урока:
Познакомить учащихся с новым материалом.
Научить работать со звуковыми файлами, обрабатывать их с помощью редактора
Задачи урока:
Образовательные: Выработать навыки работы созвуковыми файлами. Научиться решать задачи по теме.
Воспитательные:формировать познавательные потребности, интерес к предмету. Воспитать чувство ответственности за порученное дело, исполнительности, аккуратности, добросовестности.
Развивающие: развитие наблюдательности, памяти, внимания,.

Познакомить учащихся с новым материалом.
Знать и правильно употреблять новые понятия «Глубина кодирования звука», Частота дискретизации», Качество оцифрованного звука».
УМК: Информатика и ИКТ.базовый уровень: учебник для 10 класса /Н.Д. Угринович. – М.БИНОМ.
Этап урока
Время
мин
Цель
Содержание учебного материала
Методы и приемы работы
Деятельность учителя
Деятельность ученика
Организационный
      2
Проверка готовности обучающихся, их настроя на учебный процесс на уроке
-
-
Приветствует обучающихся, проверяет их готовность к уроку
Приветствуют учителя, проверяют свою готовность к уроку
Постановка темы и цели  урока
     8 











Актуализация темы.  Подготовка учащихся к активному и сознательному усвоению нового материала. Психологические требования к уроку.    
На 1 слайде видеоурока обозначена  тема урока.
Работа по плану урока.
Стадия вызова.
Сообщает тему урока,Предлагает заполнить таблицуверных-неверных утверждений
Обсуждает с учащимися результат,
формулирует цели урока вместе с учащимися, показывает значимость изучаемого материала, организует диалог с обучающимися, в ходе которого ставит учебную проблему.
Воспринимают информацию, сообщаемую учителем, отвечают на вопросы таблицы. Осознают тему урока, прогнозируют  свою деятельность на уроке..
Изложение нового материала
    12
.Использование материалов видеоурока для объяснения и иллюстрации нового материала
Просмотр видеоурокапо теме с комментариями учителя. 
Разъяснение нового материала, работа по плану урока.работа с таблицей
 Сообщает основную идею изучаемого материала. Обсуждение новых понятий.
Воспринимают информацию, сообщаемую учителем, отвечают на вопросы. Репродукция знаний( заполняют таблицу)
Восприятие и осознание учащимися нового материала

      3
Первичная проверка полученных знаний
Обсуждение и сравнение результатов
Фронтальный опрос.  Обсуждает результат работы
Участвуют во фронтальном опросе, подводят итог о формировании новых знаний и понятий
 Восприятие и осознание учащимися нового материала 

7
.Использование материалов видеоурока для объяснения и иллюстрации нового материала

Просмотр видеоурокапо теме с комментариями учителя. 
до 13мин.

Разъяснение нового материала. Интерактив:
Класс разбиваетсяс на три группы: превая решает задачи уровнеь 3, вторая – 4, третья – 5. Возможно переходить из одной группы в другую.
Сообщает основную идею изучаемого материала. Обсуждение основных видов задач и их решения.
Работа в группах.
Участвуют в обсуждении,
Работают в группах.
Осмысление, обобщение и систематизация знаний

4
Соответствие поставленных задач с достигнутыми
рефлексия, контроль
Задает вопросы о задачах урока, Задает домашнее задание «Решение задач»
Анализ и сравнение выполнения заданий в группах.
, высказывают свои впечатления от урока, вносят предложения.
Приложение
1. Размер цифрового файла
Уровень «3»
1. Определить размер (в байтах) цифрового аудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит. Файл сжатию не подвержен.  ([1], стр. 156, пример 1)
Решение:
Формула для расчета размера (в байтах) цифрового аудио-файла:A=D*T*I/8.
Для перевода в байты полученную величину надо разделить на 8 бит.
22,05 кГц =22,05 * 1000 Гц  =22050 Гц
A=D*T*I/8 = 22050 х 10 х 8 / 8 = 220500 байт.
Ответ: размер файла  220500 байт.
2. Определить объем памяти для хранения цифрового аудиофайла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 бит.  ([1], стр. 157, №88)
Решение:
A=D*T*I/8. – объем памяти для хранения цифрового аудиофайла.
44100 (Гц) х 120 (с) х 16 (бит) /8 (бит) = 10584000 байт= 10335,9375 Кбайт= 10,094 Мбайт.

Ответ: ≈ 10 Мб
Уровень «4»
3. В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретизации и разрядность?  ([1], стр. 157, №89)
Решение:
Формула для расчета частоты дискретизации и разрядности: D* I =А/Т
(объем памяти в байтах) : (время звучания в секундах):
2, 6 Мбайт= 2726297,6 байт
D* I =А/Т= 2726297,6 байт: 60 = 45438,3 байт
D=45438,3 байт : I
 Разрядность адаптера может быть 8 или 16 бит. (1 байт или 2 байта). Поэтому частота дискретизации может быть либо  45438,3 Гц = 45,4 кГц ≈ 44,1 кГц–стандартная характерная частота дискретизации, либо 22719,15 Гц = 22,7 кГц ≈ 22,05 кГц - стандартная характерная частота дискретизации
Ответ:

Частота дискретизации
Разрядность аудиоадаптера
1 вариант
22,05 КГц
16 бит
2 вариант
44,1 КГц
8 бит
4.  Объем свободной памяти на диске — 5,25 Мб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц?  ([1], стр. 157, №90)
Решение:
Формула для расчета длительности звучания: T=A/D/I
(объем памяти в байтах) : (частота дискретизации в Гц) : (разрядность звуковой платы в байтах):
5,25 Мбайт = 5505024 байт
5505024 байт: 22050Гц : 2 байта = 124,8 сек
Ответ: 124,8 секунды
5. Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой платы — 8. С какой частотой дискретизации записан звук?  ([1], стр. 157, №91)
Решение:
Формула для расчета частоты дискретизации:D =А/Т/I
(объем памяти в байтах) : (время записи в секундах) : (разрядность звуковой платы в байтах)
1,3 Мбайт = 1363148,8 байт
1363148,8 байт: 60 : 1 = 22719,1 Гц

Ответ: 22,05 кГц
6. Две минуты записи цифрового аудиофайла занимают на диске 5,1 Мб. Частота дискретизации — 22050 Гц. Какова разрядность аудиоадаптера?  ([1], стр. 157, №94)
Решение:
Формула для расчета разрядности: (объем памяти в байтах) : (время звучания в секундах): (частота дискретизации):
5, 1 Мбайт= 5347737,6 байт
5347737,6 байт: 120 сек : 22050 Гц= 2,02 байт =16 бит

Ответ: 16 бит
7. Объем свободной памяти на диске — 0,01 Гб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44100 Гц?  ([1], стр. 157, №95)
Решение:
Формула для расчета длительности звучанияT=A/D/I
(объем памяти в байтах) : (частота дискретизации в Гц) : (разрядность звуковой платы в байтах)
0,01 Гб = 10737418,24 байт
10737418,24 байт: 44100 : 2 = 121,74 сек =2,03 мин
Ответ: 20,3 минуты

8. Оцените информационный объем моноаудиофайла длительностью звучания 1 мин. если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно:
а) 16 бит и 8 кГц;
б) 16 бит и 24 кГц.

 ([2], стр. 76, №2.82)

Решение:
а).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 8 000 = 128000 бит = 16000 байт = 15,625 Кбайт/с
2) Информационный объем звукового файла длительностью 1 минута равен:
15,625 Кбайт/с х 60 с = 937,5 Кбайт
б).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 24 000 = 384000 бит = 48000 байт = 46,875 Кбайт/с
2) Информационный объем звукового файла длительностью 1 минута равен:
46,875 Кбайт/с х 60 с =2812,5 Кбайт = 2,8 Мбайт
Ответ: а) 937,5 Кбайт; б) 2,8 Мбайт

Уровень «5»
Используется таблица 1
9. Какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 минуты?  ([1], стр. 157, №92)
Решение:
Высокое качество звучания достигается при частоте дискретизации 44,1КГц и разрядности аудиоадаптера, равной 16.
Формула для расчета объема памяти: (время записи в секундах) x (разрядность звуковой платы в байтах) x (частота дискретизации):
180 с х 2 х 44100 Гц = 15876000 байт = 15,1 Мб
Ответ: 15,1 Мб
10. Цифровой аудиофайл содержит запись звука низкого качества (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб?  ([1], стр. 157, №93)
Решение:
Для мрачного и приглушенного звука характерны следующие параметры: частота дискретизации — 11, 025 КГц, разрядности аудиоадаптера — 8 бит (см. таблицу 1). Тогда T=A/D/I. Переведем объем в байты: 650 Кб = 665600 байт
Т=665600 байт/11025 Гц/1 байт ≈60.4 с

Ответ: длительность звучания равна 60,5 с
11.  Оцените информационный объем высокачественногостереоаудиофайла длительностью звучания 1 минута, если "глубина" кодирования 16 бит, а частота дискретизации 48 кГц.   ([2], стр. 74, пример 2.54)
Решение:
Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 48 000 х 2 = 1 536 000 бит = 187,5 Кбайт (умножили на 2, так как стерео).
Информационный объем звукового файла длительностью 1 минута равен:
187,5 Кбайт/с х 60 с ≈ 11 Мбайт
Ответ: 11 Мб
Ответ: а) 940 Кбайт; б) 2,8 Мбайт.

12.  Рассчитайте время звучания моноаудиофайла, если при 16-битном кодировании и частоте дискретизации 32 кГц его объем равен:
а) 700 Кбайт;
б) 6300 Кбайт

 ([2], стр. 76, №2.84)

Решение:
а).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 32 000 = 512000 бит = 64000 байт = 62,5 Кбайт/с
2) Время звучания моноаудиофайла объемом 700 Кбайт равно:
700 Кбайт : 62,5 Кбайт/с = 11,2 с
б).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 32 000 = 512000 бит = 64000 байт = 62,5 Кбайт/с
2) Время звучания моноаудиофайла объемом 700 Кбайт равно:
6300 Кбайт : 62,5 Кбайт/с = 100,8 с = 1,68 мин
Ответ: а) 10 сек; б) 1,5 мин.
13. Вычислить, сколько байт информации занимает на компакт-диске одна секунда стереозаписи (частота 44032 Гц, 16 бит на значение). Сколько занимает одна минута? Какова максимальная емкость диска (считая максимальную длительность равной 80 минутам)?  ([4], стр. 34, упражнение №34)
Решение:
Формула для расчета объема памятиA=D*T*I:
(время записи в секундах) * (разрядность звуковой платы в байтах) * (частота дискретизации). 16 бит -2 байта.
1) 1с х 2 х 44032 Гц = 88064 байт (1 секундастереозаписи на компакт-диске)
2) 60с х 2 х 44032 Гц = 5283840 байт (1 минутастереозаписи на компакт-диске)
3) 4800с х 2 х 44032 Гц = 422707200 байт=412800 Кбайт=403,125 Мбайт (80 минут)
Ответ: 88064 байт (1 секунда), 5283840 байт (1 минута), 403,125 Мбайт (80 минут)
2. Определение качества звука.
Для определения качества звука надо найти частоту дискретизации и воспользоваться таблицей №1
256 (28) уровней интенсивности сигнала-качество звучания радиотрансляции, использованием 65536 (216)  уровней интенсивности сигнала - качество звучания аудио-CD. Самая качественная частота соответствует музыке, записанной на компакт-диске. Величина аналогового сигнала измеряется в этом случае 44 100 раз в секунду.

Уровень «5»

13. Определите качество звука (качество радиотрансляции, среднее качество, качество аудио-CD) если известно, что объем моноаудиофайла длительностью звучания в 10 сек. равен:
а) 940 Кбайт;
б) 157 Кбайт.

 ([2], стр. 76, №2.83)

Решение:
а).
1) 940 Кбайт= 962560 байт = 7700480 бит
2) 7700480 бит : 10 сек = 770048 бит/с
3) 770048 бит/с : 16 бит = 48128 Гц–частота дискретизации – близка к самой высокой 44,1 КГц
Ответ: качество аудио-CD
б).
1) 157 Кбайт= 160768 байт = 1286144 бит
2) 1286144 бит : 10 сек = 128614,4 бит/с
3) 128614,4 бит/с : 16 бит = 8038,4 Гц
Ответ: качество радиотрансляции
Ответ: а) качество CD; б) качество радиотрансляции.
14.  Определите длительность звукового файла, который уместится на гибкой дискете 3,5”. Учтите, что для хранения данных на такой дискете выделяется 2847 секторов объемом 512 байт.
а) при низком качестве звука: моно, 8 бит, 8 кГц;
б) при высоком качестве звука: стерео, 16 бит, 48 кГц.

 ([2], стр. 77, №2.85)

Решение:
а).
1) Информационный объем дискеты равен:
2847 секторов х 512 байт = 1457664 байт = 1423,5 Кбайт
2) Информационный объем звукового файла длительностью в 1 секунду равен:
8 бит х 8 000 = 64 000 бит = 8000 байт = 7,8 Кбайт/с
3) Время звучания моноаудиофайла объемом 1423,5 Кбайт равно:
1423,5 Кбайт : 7,8 Кбайт/с = 182,5 с ≈ 3 мин
б).
1) Информационный объем дискеты  равен:
2847 секторов х 512 байт = 1457664 байт = 1423,5 Кбайт
2) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 48 000 х 2= 1 536 000 бит = 192 000 байт = 187,5 Кбайт/с
3) Время звучания стереоаудиофайла объемом 1423,5 Кбайт равно:
1423,5 Кбайт : 187,5 Кбайт/с = 7,6 с
Ответ: а) 3 минуты; б) 7,6 секунды.
3. Двоичное кодирование звука.
При решении задач пользуется следующим теоретическим материалом:
Для того, чтобы кодировать звук, аналоговый сигнал, изображенный на рисунке,








плоскость разбивается на вертикальные и горизонтальные линии. Вертикальное разбиение –это дискретизация  аналогового сигнала (частота измерения сигнала), горизонтальное разбиение  - квантование по уровню. Т.е. чем мельче сетка – тем качественнее приближен аналоговый звук с помощью цифр. Восьмибитное квантование применяется для оцифровки обычной речи (телефонного разговора) и радиопередач на коротких волнах. Шестнадцатибитное – для оцифровки музыки и УКВ (ультро-коротко-волновые) радиопередач.
Уровень «3»
15.  Аналоговый звуковой сигнал был дискретизирован сначала с использованием 256 уровней интенсивности сигнала (качество звучания радиотрансляции), а затем с использованием 65536 уровней интенсивности сигнала (качество звучания аудио-CD). Во сколько раз различаются информационные объемы оцифрованного звука?   ([2], стр. 77, №2.86)
Решение:
Длина кода аналогового сигнала с использованием 256 уровней интенсивности сигнала равна 8 битам, с использованием  65536 уровней интенсивности сигнала равна 16 битам. Так как длина кода одного сигнала  увеличилась вдвое, то информационные объемы оцифрованного звука различаются в 2 раза.
Ответ: в 2 раза.
Уровень «4»
16. Согласно теореме Найквиста—Котельникова, для того чтобы аналоговый сигнал можно было точно восстановить по его дискретному представлению (по его отсчетам), частота дискретизации должна быть как минимум вдвое больше максимальной звуковой частоты этого сигнала.
·       Какова должна быть частота дискретизации звука, воспринимаемого человеком?
·       Что должно быть больше: частота дискретизации речи или частота дискретизации звучания симфонического оркестра?
 Цель: познакомить учащихся с характеристиками аппаратных и программных средств работы со звуком. Виды деятельности: привлечение знаний из курса физики (или работа со справочниками).  ([3], стр. ??, задача 2)
Решение:
Считается, что диапазон частот, которые слышит человек, составляет от 20 Гц до 20 кГц. Таким образом, по теореме Найквиста—Котельникова, для того чтобы аналоговый сигнал можно было точно восстановить по его дискретному представлению (по его отсчетам), частота дискретизации должна быть как минимум вдвое больше максимальной звуковой частоты этого сигнала. Максимальная звуковая частота которую слышит человек -20 КГц, значит, аппаратура и программные средства должны обеспечивать частоту дискретизации не менее 40 кГц, а точнее 44,1 КГц. Компьютерная обработка звучания симфонического оркестра предполагает более высокую частоту дискретизации, чем обработка речи, поскольку диапазон частот в случае симфонического оркестра  значительно больше.
Ответ: не меньше 40 кГц, частота дискретизации симфонического оркестра больше.
Уровень»5»
17. На рисунке изображено зафиксированное самописцем звучание 1 секунды речи. Закодируйте его в двоичном цифровом коде с частотой 10 Гц и длиной кода 3 бита.  ([3], стр. ??, задача 1)
01
Решение:
Кодирование с частотой 10 Гц означает, что мы должны измерить высоту звука 10 раз за секунду. Выберем равноотстоящие моменты времени:
02
Длина кода в 3 бита означает 23 = 8 уровней квантования. То есть в качестве числового кода высоты звука в каждый выбранный момент времени мы можем задать одну из следующих комбинаций: 000, 001, 010, 011, 100, 101, 110, 111. Их всего 8, следовательно, высоту звука можно измерять на 8 «уровнях»:
03
«Округлять» значения высоты звука будем до ближайшего нижнего уровня:
04
Используя данный способ кодирования, мы получим следующий результат (пробелы поставлены для удобства восприятия): 100 100 000 011 111 010 011 100 010 110.
Примечание. Целесообразно обратить внимание учащихся на то, насколько неточно код передает изменение амплитуды. То есть частота дискретизации 10 Гц и уровень квантования 23 (3 бита) слишком малы. Обычно для звука (голоса) выбирают частоту дискретизации 8 кГц, т. е. 8000 раз в секунду, и уровень квантования 28 (код длиной 8 бит).
Ответ: 100 100 000 011 111 010 011 100 010 110.

18. Объясните, почему уровень квантования относится, наряду с частотой дискретизации, к основным характеристикам представления звука в компьютере. Цели: закрепить понимание учащимися понятий «точность представления данных», «погрешность измерения», «погрешность представления»; повторить с учащимися двоичное кодирование и длину кода. Вид деятельности: работа с определениями понятий.  ([3], стр. ??, задача 3)
Решение:
В геометрии, физике, технике есть понятие «точность измерения», тесно связанное с понятием «погрешность измерения». Но есть еще и понятие «точность представления». Например, про рост человека можно сказать, что он: а) около. 2 м, б) чуть больше 1,7 м, в) равен 1 м72 см, г) равен 1 м71 см8 мм. То есть для обозначения измеренного роста можно использовать 1, 2, 3 или 4 цифры.
Так же и для двоичного кодирования. Если для записи высоты звука в конкретный момент времени использовать только 2 бита, то, даже если измерения были точны, передать можно только 4 уровня: низкий (00), ниже среднего (01), выше среднего (10), высокий (11). Если использовать 1 байт, то можно передать 256 уровней. Чем выше уровень квантования, или, что то же самое, чем больше битов отводится для записи измеренного значения, тем точнее передается это значение.
Примечание. Следует отметить, что измерительный инструмент тоже должен поддерживать выбранный уровень квантования (длину, измеренную линейкой с дециметровыми делениями, нет смысла представлять с точностью до миллиметра).

Ответ: чем выше уровень квантования тем точнее передается звук.

Литература:
[1] Информатика. Задачник-практикум в 2 т. /Под ред. И.Г. Семакина, Е.К. Хеннера: Том 1. – Лаборатория Базовых Знаний, 1999 г. – 304 с.: ил.
 [2] Практикум по информатике и информационным технологиям. Учебное пособие для общеобразовательных учреждений / Н.Д. Угринович, Л.Л. Босова, Н.И. Михайлова. – М.: Бином. Лаборатория Знаний, 2002. 400 с.: ил.
 [3] Информатика в школе: Приложение к журналу «Информатика и образование». №4 — 2003. — М.: Образование и Информатика, 2003. — 96 с.: ил.



Алгоритмы-подсказки
Алгоритм 1 (Вычислить информационный объем звукового файла)
- выяснить, как считываются значения в память за время звучания файла;
- выяснить разрядность кода (сколько бит в памяти занимает каждое измеренное значение);
- перемножить результаты;
- перевести результат в байты;
- перевести результат в Кбайты;
- перевести результат в Мбайты.
Алгоритм 2 (Вычислить время звучания файла.)
- Информационный объем файла перевести в Кбайты.
- Информационный объем файла перевести в байты.
- Информационный объем файла перевести в биты.
- Выяснить, сколько значений всего измерялось. (Биты поделить на разрядность кода.)
- Вычислить кол-во секунд звучания. (Предыдущий результат поделить на частоту дискретизации.)
 


Комментариев нет:

Отправить комментарий